SOLVED: Determining Whether a Set Is a Basis In Exercises 39-46, determine whether S is basis for the given vector space: 39. S = (4, -3). (5.2) for R? 40. S = (1,2) , (1, - 1) for R2 41. S = (1,5,3) , (0, 1, 2). (0, 0, 6) for R' 42. S = (2, 1,0) , (0, - 1, 1) for R' 43. S = (0,3, -2). (4,0.3). (-8, 15. - 16) for R' 44. S = (0. 0, 0) , (1,5.6). (6, 2, 1) for R' 45. S = (-1,2,0,0), (2,0. - 1,0). (3,0,0,4), (0,0,5,0) for R 46. S = (1, 0, 0, 1). (0. 2,0, 2). (1,0, 1, 0) . (0. 2, 2, 0) for R4