In the Introduction to the Derivative video we introduce the notion of the derivative of a function and explain how the derivative captures the instantaneous rate of change of a function. In the ...
A PHASE relation familiar to students of applied mathematics exists between a simple harmonic oscillation and its derivative. Similar relations exist between exponential functions and their ...
This paper extends uniqueness results due to Boas and Trembinska, on entire functions with exponential growth whose real part vanishes on lattice points. Here the case is studied where the real part ...
Data from an experiment may result in a graph indicating exponential growth. This implies the formula of this growth is \(y = k{x^n}\), where \(k\) and \(n\) are constants. Using logarithms, we can ...
Some results have been hidden because they may be inaccessible to you
Show inaccessible results